A Nonlinear Two - Phase Stefan Problem with Melting
نویسندگان
چکیده
We consider a one-dimensional two-phase Stefan problem, modeling a layer of solid material oating on liquid. The model includes internal heat sources, variable total mass (resulting e.g. from sedimentation or erosion), and a pressure-dependent melting point. The problem is reduced to a set of nonlinear integral equations, which provides the basis for an existence and uniqueness proof and a new numerical method. Numerical results are presented.
منابع مشابه
Nonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملNewton-Product integration for a Two-phase Stefan problem with Kinetics
We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.
متن کاملAn Algorithm based on Predicting the Interface in Phase Change Materials
Phase change materials are substances that absorb and release thermal energy during the process of melting and freezing. This characteristic makes phase change material (PCM) a favourite choice to integrate it in buildings. Stephan problem including melting and solidification in PMC materials is an practical problem in many engineering processes. The position of the moving boundary, its veloci...
متن کاملTHE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملNewton-Product Integration for a Stefan Problem with Kinetics
Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.
متن کامل